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2.1.1 Variables thermodynamiques

Premier principe de thermodynamique

Variable d’état Grandeur de parcours

» Définition » Définition
Quantité dépendante de I'état du Quantité dépendante de I’histoire du
systeme uniquement systeme
»Propriétés »Propriétés
Intégrale indépendante du chemin Intégrale dépendante du chemin
d’intégration d’intégration

2 2

[dv=v,—v, [ 86=0,—4

1 1

f/gd?b —0 9§6¢ = ()
Le symbole dindique qu’il s'agit d’une Le symbole ¢ indique qu’il s’agit d’une
différentielle totale (exacte). différentielle non-exacte.
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2.1.1 Variables thermodynamiques
Premier principe de thermodynamique

Variable d’état: Grandeur de parcours:
altitude longueur du chemin parcouru

» La variable z est indépendante du » La grandeur / dépend de |a succession
chemin suivi entre les états 1 et 2 et des points intermédiaires entre les états
peut étre évaluée en tout point 1et?2
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2.1.1 Variables thermodynamiques

Premier principe de thermodynamique

Systeme simple

>Déf|n|t|on >Remarque
un §\ysteme est, §|mple si son etat est Conditions nécessaires et suffisantes
entierement deéfini par : pour gu’un systéme soit simple:
=Sa composition chimique =Systéme monophase
"Sa masse =Systéme en équilibre thermique et
=2 variables d’état indépendantes mécanique
»Conséguences »Exemple
. . . |
Soit 1),,1,,1, variables d’état On choisit les variables d’état e, p,v (=—)
indépendantes, si le systeme est On peut écrire: P
simple: . _
=1 (1,, 1) e=e(p,v)
Et sous forme différentielle: Et sous forme différentielle:
oY oY Oe Oe
_ 1 1 _
X )5 X3 ), P), U)p
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2.1.2 Formulation du premier principe
Premier principe de thermodynamique

5W\ 50
systeme
matériel Surfa,ce
masse 771 = cste déformable
- fermée

- conductrice (travail, chaleur)

» Systeme fermé (pas de flux de masse) » Substance chimigquement inerte

La somme de I'énergie fournie sous forme de chaleur 0Q et de travail /7 a une masse de
gaz mest égale a la variation de son énergie totale dF )

dE, = 6Q + 6W
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2.1.2 Formulation du premier principe

Premier principe de thermodynamique

\ systeme — 6q

matériel
masse 71 = cste

En divisant par la masse mj le premier principe s’écrit:

de, = de+de,, +de, , = b0q+ow

5q chaleur spécifique ou massique fournie par I'extérieur

ow travail spécifigue ou massique fourni par les forces extérieures
det variation d’énergie spécifique ou massique totale

de variation d’énergie interne spécifique ou massique

decin variation d’énergie cinétique spécifiqgue ou massique

depot variation d’énergie potentielle spécifigue ou massique

Flavio Noca Chap 2 - Thermodynamique




2.1.2 Formulation du premier principe
Premier principe de thermodynamique

Energie interne €
= énergie cinétique + potentielle a I’échelle atomique/moléculaire

Exemple: pour un gaz parfait

Translation c Rotation

Atome
Vibration
aaese———)

VNV

Flavio Noca Chap 2 - Thermodynamique



2.1.3 Formulation alternative du 1er principe EPFL

Premier principe de thermodynamique

EXPRESSION DU TERME DE TRAVAIL MECANIQUE pour un processus REVERSIBLE
Hypotheses

» Systeme homogéne isotrope

» Energie potentielle nulle

RN

» Energie cinétique nulle %4 S
» Déplacement du piston sans frottement , R
X, X
Par définition, le volume massique s’écrit, Le volume peut aussi s‘exprimer par:
Vo1
V=—=— V—V,=8x—x,)
m p
Puisque mest constant (systeme fermé), qui devient sous forme différentielle:
on obtient la relation différentielle
dV =8 dx
dV =mdv

mduv

= mdv=Sdx = dx=




2.1.3 Formulation alternative du 1er principe

Premier principe de thermodynamique

Le travail massique exercée par la force extérieure F'est égal a: Wy
dx=—dv
F —p-S) m i 5
6w:—dx:( P )( dv) = —pdv F=—p-S
m m S §
On remplace ce terme dans la formulation du premier de=0q +ow
principe:
de = 0q +ow=0q — pdv
Remarque

Le remplacement de 6w par —pdv nécessite un processus réversible:

Le déplacement doit étre suffisamment lent pour admettre une
pression uniforme dans le volume du cylindre et pour négliger les
frottements
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2.1.4 Chaleurs spécifiques

Premier principe de thermodynamique

Un transfert de chaleur 6g implique une variation de température d7°du systeme

Définition — g n’est pas une variable
5q d’état

» La chaleur spécifique est définie par : C — ——
dT
|:> La chaleur spécifique dépend de la transformation

» A l'aide du premier principe la définition devient (pour une transformation réversible)
og de dv o
“ar _ar  Par e
» On utilise couramment les chaleurs spécifiques a pression constante et a volume
constant,

C

oq 6q
“lar), " lar
p 7,

C




2.1.4 Chaleurs spécifiques

Premier principe de thermodynamique

» Pour un systeme simple, on peut écrire:

e=-e(v,T) a’e:[& dv—l—[%] dT = 6q — pdv
> Ainsi v )z oT ),
Oe Oe
og =|—| dT +||— d
! [aT]U " [avJT“’ !

» Pour les transformation choisies, on en déduit:
o o, 0 0
" N 0T ) ar), \orT), ov ). orT ),

» Remarques

= Relation complexe pour C, car les termes en dUne s'annulent pas pour la
transformation a pression constante

= Utilisation d’une autre variable d’état pour le calcul de c,
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2.1.4 Chaleurs spécifiques EPFL
Premier principe de thermodynamique

» Définition de la variable d’état enthalpie:
h=e+ pv — dh=de+ pdv-+uvdp
» En vertu du premier principe: dh = 5q —+ Udp

» Pour un systeme simple, on peut écrire:

Oh Oh
h=h(p,T) —dh= dp + dT = 6g + vd,
(p,T) apr [8T]p q +vap
Oh Oh
— 0 dTl + —vl|d
" [3T ] [8p]T %
» Pour les transformations choisies, on en déduit:
o Oh Oh 0
e = MRECECE R
P\ (5T | ar), \or), \lop), Jlor
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2.1.4 Chaleurs spécifiques

Premier principe de thermodynamique

» Finalement, on retient les relations suivantes pour ¢, et C,

oq Oe oq Oh _[@ [@] [@]
)] el )
dar), \oT), ar), \or), :
B (%j 2]
> On en déduit les relations suivantes: vo\aor ), p ), oT ),
), - [
c,—C, =P lz=| =1V || Il 5%
ov ), \OT ), op ), \OT ),
> Le rapport des chaleurs spécifiques ) est défini par
on
’ych - orT ),
c, [0e
oT

v
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2.2.1 Entropie

Second principe de thermodynamique

Accroissement d’entropie d’un systéme a température 7' lié & un transfert de chaleur 6q

T
Loi de Clausius pour une transformation réversible % —q — ()
Systeme en équilibre (homogéene) T rév
( )
|l existe donc une variable d’état .§ 6q
a laquelle Clausius a donné le nom d’ENTROPIE dS — | —
iy

rév
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2.2.1 Entropie

Second principe de thermodynamique

Accroissement d’entropie d’un systéme a température  [# a un transfert de chaleur 6q

Transformation irréversible Systeme en deséquilibre (non homogene),
avec création interne d’entropie transfert de chaleur interne, réaction chimique

(création d’entropie)
s,

l

Comme |'entropie est une fonction d’état, elle ne L 6q
ds = - Os

dépend pas de la transformation, réversible ou i
irréversible T
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2.2.2 Formulation du second principe

Second principe de thermodynamique

Toute transformation thermodynamique est irréversible

» Le second principe de la thermodynamique s’énonce comme suit:

La variation d’entropie d’un systeme thermodynamique quelconque, due
aux opérations internes, ne peut étre que positive ou nulle.

» Le second principe prend ainsi I'une ou I'autre des formes suivantes:

5Si20 dszé—q

T

» Remarques

Une transformation réversible dans ce cas est un processus idéal, qui peut étre considérer
comme une suite d'états d'équilibres infiniment voisins
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2.2.2 Formulation du second principe

Second principe de thermodynamique

» Conséquence:

= Dans certains cas, les phénomenes irréversibles sont assez faibles pour étre négligés,
nous avons alors, pour une transformation réversible:

dsz? == 0q =1Tds

" | e premier principe s’écrit donc:

de=Tds — pdv &> dh=Tds—+ vdp
= On obtient 1ds = de+ pdv = dh—vdp

» Remarques

= Ces relations s’appellent les RELATIONS DE GIBBS.

= Elles ne dépendent que de fonctions d’état: ELLES SONT VALABLES POUR TOUTE
TRANSFORMATION, REVERSIBLE OU IRREVERSIBLE.
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2.3.1 Relations de réciprocite E PFL
Transformations thermodynamiques

Relations de réciprocité obtenues a partirde s = s(p,T) et h=h(p,T)

» Soient,
s=s(p,T) h=h(p,T)
» Par suite,
ds—| 95| ap+ [8‘“] dT dn |2 dp + [ah] dT
8p orT ), 8p oT
» D’apres la relation du premier principe précédente:
ds = dh _ vdp :l[%] dT—I— 8h —vl|ldp Tds = dh—vdp
r T |T\0T), 8p |
» Par comparaison, on obtient:
[ﬁ] _L[%] A Os ||
oT | S T op).  T|\dp),
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2.3.1 Relations de réciprocité

Transformations thermodynamiques

Relations de réciprocité obtenues a partirde s = s(p,7) et h=h(p,T)

» De plus, a l'aide de la propriété différentielle suivante:

0 [ 0s ] 0 | Os
op\OT ), oT | Op
» On obtient les relations,

)

T

T r p

e
Op ) R OT |,
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2.3.1 Relations de réciprocité =P-L
Transformations thermodynamiques

Relations de réciprocité obtenues a partirde s = s(v,T) et e=e(v,T)

» Soient,
s=s(v,T) e=e(v,T)
» Par suite,
dS:[@] dv—k(ﬁ] dT de:[@] dU—I—[@] dT
ov), oT ), ov ), oT ),
» D’apres la relation du premier principe précédente:
dS:de_|_de:l [@] +p d’U—I—l[&] ldT Tds = de + pdv
T T |T|dv), T\oT ), :
» Par comparaison, on obtient:
[85] 1[(%] @ [&v] 1 [88]
OT | s, T Ou |- ov ),
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2.3.1 Relations de réciprocité

Transformations thermodynamiques

Relations de réciprocité obtenues a partirde s = s(v,7) ete=e(v,T)

» De plus, a I'aide de la propriété différentielle suivante:

0 [85‘] | 0 [ﬁs]
ov\or),|. ~|aT\ov), ).
» On obtient les relations,
SehalleE] - | | 5] leatle
ov ), oT ), Op |- oT ),
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2.3.2 Calcul de variation d’entropie

Transformations thermodynamiques

Variations d’entropie pour une transformation arbitraire

» Avec la relation de Gibbs: Tds = de + pdv
2 2 i
a= [ [ 2ay (o) 1) s
Lo T lor), rlor), T
> Enseservantde e=-e(v,T) Oe) _ . 8_p] B
) ) - ov), \ar), P
1|[ Oe Oe p i
As= | —=||==| dT +|—| dv|+ | =dv ; :@]
«[T [6T]U [au]T «[T " lor),
» Avec les relations de réciprocité et les définitions des chaleurs spécifiques:
2 2 9) 2
C 1|( Oe c 0
ao= [Sears [ 2] 4pdu= [Sar+ [| 2]
o T \Ov); ar |or )
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2.3.2 Calcul de variation d’entropie
Transformations thermodynamiques

Variations d’entropie pour une transformation arbitraire

» Avec la relation de Gibbs: Tds = dh— vdp
2 2 |
ps=[ 2 [2ap (&) -1(2) -2
Lo T \er), rler), T
> Enseservantde A =h(p,T) Oh ’U—T[@]
- Lop), T ),
2 2 !
1| Oh oh v i
AS:f— [—] dT+[—] dp —f—dp g cp:[g—;]
| T|\oT P 8]9 7 A T ! P
» Avec les relations de réciprocité et les définitions des chaleurs spécifiques:
2
oh

op

2 2
1

c 9,
T—’U dpz[?pdT—f[a—;]pdp
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2.3.3 Transformation isentrope
Propriétés thermodynamiques des gaz parfaits

» A partir de la relation:
oq
T

ds = ——+0s,

> Une transformation est dite ISENTROPIQUE si:

ds =0 S = const

» Une transformation est donc isentrope quand:

» Elle est adiabatique: 6q =0

» Elle est réversible: (SSZ. — O
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2.3.4 Vitesse du son
Transformations thermodynamiques

SRR e

SEE

FI

atm

Sound Pressure

Ivliy

isvr
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2.3.4 Vitesse du son
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2.3.4 Vitesse du son

Transformations thermodynamiques

» |sotherme (température constante) ou isentropique (adiabatique et réversible) 2?7
> Diffusion thermique: D ~10"° —107° mz/S

» Echelle de diffusion thermique (distance sur lagquelle se propage la chaleur):

D

o~ |— f : fréquence acoustique
thermique f

» Echelle de propagation sonore = longueur d’'onde acoustique:

) ~ ﬁ a : vitesse du son

acoustique f

5thermique N \/D ) f

a

<1

acoustique

La propagation acoustique est largement adiabatique pour < 10° Hz
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2.3.4 Vitesse du son

Transformations thermodynamiques

> Soit une transformation isentropique p = p(p,s) = p(p,s,) = p(p)

» On considere une petite perturbation de pression Ap

» On effectue un développement en série de Taylor

0 1
Ap = p—p, :[8_1;] (0=po)+7

O’ p
Op’

(:0_:00)2 + ..

» Définition

On appelle vitesse du son la grandeur  telle que:

00
dp ).

a —
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2.3.5 Compressibilité

Transformations thermodynamiques

Une variation de pression dp agissant sur une particule engendre un pourcentage de
variation de volume 4V /v

» Définition
= Le coefficient de compressibilité est définie par:
1 (av 1 dv 1(dp
o=———|— o=——|— o=—|—
Vidp v\ dp o\ dp
= Cette définition est insuffisante, il faut spécifier la transformation
1|0V 1|ov 1{0p
&, =——|—— = ——|— o =—|—
Viop). v|(0p ). plOp).
" Par exemple, avec x = §, on obtient le coefficient de compressibilité isentropique:
1(oV 1|0v 1{0p
o —— = o, =——|— oy — — —
V{op ), v(0p ), p\Op),
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2.3.5 Compressibilité

Transformations thermodynamiques

La compressibilité d’'un écoulement (ou d’une transformation) est la variation de
masse volumique, qui dépend de la variation de deux variables d’état

= Avec |la pression et la température comme variables indépendantes

1{0p 1 ap]
—=qa,dp— 3 dT =—|— = ——|—
p T O o p[ﬁp]T g P[an

= Avec la pression et I'entropie comme variables indépendantes

T
p

Os C

P

7 (o 10 |
Lfop] _1 8Tp_’08TP__ﬁp Cp:[as]
P[as]ppas _[ﬁ] T, T 0T,
or) lor) T
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2.3.5 Compressibilité

Transformations thermodynamiques

» Pour un écoulement isentropique: d 3T
Jd J . —=a,dp——L—ds
_P_(asp)._l’ p ¢,
p P _1fop) _ 1
J J plop). pa’
GO N
2
P JEa P
. __ P
= Pourunliquide: QO P = - <1
pa

* On utilise aussi le module d’élasticité isentropique pour spécifier la compressibilité

N

= Plus KS est grand, plus le matériau est rigide, plus la vitesse du son est grande
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2.3.5 Compressibilité =P-L
Transformations thermodynamiques

> Eau

K. ~21'000 atm

o, ~4,8x107 atm™

Ap
0

~1% < Ap ~ 210 atm
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2.3.5 Compressibilité

Transformations thermodynamiques

» Eau incompressible » Eau compressible

A

0Ql

5'062 m 5'000 m
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2.3.5 Compressibilité

Transformations thermodynamiques

Interprétation du nombre de Mach M
> Le nombre de Mach M caractérise la compressibilité d’un écoulement

M=
a

» En élevant au carré, on voit apparaitre
2

u _puz_pqu

M? = - K =pa’
a K, K.S | F
» Avec une surface S arbitraire, on a: 0= E
-~ 2
inertie IO U S O
. M2 ~ _ inertie __ " inertie
~ =
S T
~ rigidité rigidité
Frigidizé ~ KsS
L’ écoulement est compressible lorsque les effets d’inertie dominent les effets de rigidité
(responsables de la vitesse de propagation des ondes de pression).
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2.4.1 Définition

Propriétés thermodynamiques des gaz parfaits

Force d’interaction entre atomes et molécules

Force de répulsion 4

Distance d'équilibre

[
=

Distance interatomique

Force d'attraction +

» Pour un gaz parfait, on suppose une distance infiniment grande entre les molécules

= Energie potentielle d’interaction nulle

= Energie sous forme d’énergie cinétique uniguement
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2.4.1 Définition

Propriétés thermodynamiques des gaz parfaits

» Si un gaz est considéré comme parfait:

Loi des physiciens (en nombre de particules Npam.des ) N
A articles
p.V_Npam'cleS.k.T p:%'k'T:nPam‘cleS'k°T
Loi des chimistes (en nombre de moles NV )
N N
pV= _ pamice -(k'NA)-T: N . -R-T p=—tles RT=p -R-T
N, %
Loi des ingénieurs (en masse m )
R m
P'V:<Nmozes'M)° — - T=m-r-T p=—r1r-T=prT
M 14
» Constante de Boltzmann k=1.3806x10"> J-K'
> Nombre d’Avogadro N, =6.02214076x10* mol '
> Constante universelle des gaz R=k-N,=8314 J/(mol.K)
> Masse molaire M [kg-mol_l]
» Constante spécifique du gaz r= i [J-kg_1 -K_l]
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2.4.2 Conséquence de I’équation des gaz parfaits E PFL

Propriétés thermodynamiques des gaz parfaits

Energie interne et enthalpie

» On considere les relations de réciprocités suivantes:

Oe 1 0 Oh 1 T (0
op), p oT), op), p p\OT),
» Avec |'équation d’état, on montre que:
(& o on| _
op ). op |,
» En d’autres termes:
e=e(p,T)—e=e(T) h=h(p,T) — h=nT)

Pour un gaz parfait, I'énergie interne et I'enthalpie ne dépendent que de la
température statique
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2.4.2 Conséquence de |'équation des gaz parfaits E PF L

Propriétés thermodynamiques des gaz parfaits

Variation d’énergie interneavec e =e(p,T)  Variation d’enthalpieavec 7 = h(p,T)

Jo— | 0¢ Oe dpt [86] a7 g Oh iyt [0h
3p oT 8p oT

]dT
p

» Relations de réciprocité,

oh [811]
_ :O _— = C
op ), or),

» Relations de réciprocité,

Oe [(%J
— | =0 —| =c,
[C%L aT),

» On remplace et on integre: » On remplace et on integre:
e= ch(T)dT+const h= fcp (T')dT + const
» Pour une transformation avec CU constant: > Pour une transformation avec Cp constant:
e=c, I + const h=c, T+ const
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2.4.2 Conséquence de I’équation des gaz parfaits
Proprietés thermodynamiques des gaz parfaits

Chaleurs spécifiques

» On rappelle la relation précédemment obtenue:

N
i op ). |\OT ), orT ).

» Avec I'équation des gaz parfaits, on a la relation de Meyer:

C r
_ _ _
c,—C,=T7 1S 7
C Cp Cp
> Avec la définition Y = _P
CU
r A
C == fy Cil=
p ) _1
TR Y
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2.4.2 Conséquence de |'équation des gaz parfaits E PF L

Propriétés thermodynamiques des gaz parfaits

Variation d’entropie avec s = s(7, p) Variation d’entropie avec s = s(7',v)
Os Os Os Os
ds = dT + dp ds = dT + dv
aT 8p oT ., 8v
p
» Relations de réciprocité, » Relations de réciprocité,
Os c, os| v Os ] _ & [@J _P
an_T op ). T or), T ov), T
% On obtient avec I’équation d’état: » On obtient avec I'équation d’état:
S—fC ——rln(p)—l—const S—fC ——|—r1n(v)—|—const
» Pour une transformation avec c, constant: » Pour une transformation avec ¢, constant:
T T,
As=c, In|—= _rin|f2 As=c, In|—= 2 | 4 pln| 22
1, P 1 Ul
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2.4.3 Transformation isentrope
Proprietés thermodynamiques des gaz parfaits

» Avec : c,= o c, = r
v—1 v—1
» On obtient:
yr 7, P r 7, U,
As = In —rn|== As = In +rln|—=
v—1 1 P v—1 1 Y,

» On divise par  7°

a 1

—1 T v—1
as _ L |2 §:1H_2 4 In ﬁ]
r 1 P r I U,
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2.4.3 Transformation isentrope
Proprietés thermodynamiques des gaz parfaits

» La plus simple a mémoriser: p — CO”St . pfy
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2.4.4 Vitesse du son

Propriétés thermodynamiques des gaz parfaits

» Avec |'’équation d’état et |a relation isentrope, on a: p = const - p'V
0 0 st-p
[_p] =rl = P or = const-v,o”‘1 =y const-p — 72
op ), p ap ). p p
» On en déduit la relation:
dp Op
’0 S ’0 T

> On a donc

La vitesse du son est une propriété du fluide par I'intermédiaire de la grandeur 7Y
qui dépend de son état, ici la température 1.

Flavio Noca Chap 2 - Thermodynamique




2.4.5 Compressibilité

Proprietés thermodynamiques des gaz parfaits

» Pour un écoulement isentrope:

dp dp
— = \opP) i T
; (o, p) ; i%:“sdp_%p N
. 1{0p 1
1 S T T g T 2
" Gazparfaitt Q. p=— —> @:ld_p p\Op);  pa
i 2 T a’=vyrT
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