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Variable d’état

Définition

Quantité dépendante de l’état du 
système uniquement

Propriétés

Intégrale indépendante du chemin 
d’intégration

Le symbole   indique qu’il s’agit d’une 
différentielle totale (exacte).

2.1.1 Variables thermodynamiques
Premier principe de thermodynamique
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Grandeur de parcours

Définition

Quantité dépendante de l’histoire du 
système

Propriétés

Intégrale dépendante du chemin 
d’intégration

Le symbole  indique qu’il s’agit d’une 
différentielle non-exacte.
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Variable d’état:
altitude

2.1.1 Variables thermodynamiques
Premier principe de thermodynamique
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Grandeur de parcours:
longueur du chemin parcouru
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Système simple

2.1.1 Variables thermodynamiques
Premier principe de thermodynamique

1 1
1 2 3

2 33 2

d d d
x x
 

  
                

Définition

Un système est simple si son état est 
entièrement défini par :

Sa composition chimique
Sa masse
2 variables d’état indépendantes

Conséquences

Soit                    variables d’état 
indépendantes, si le système est 
simple:

Remarque

Conditions nécessaires et suffisantes 
pour qu’un système soit simple:

Système monophase
Système en équilibre thermique et 
mécanique

Exemple

On choisit les variables d’état 
On peut écrire:

p

e ede dp d
p 




               

( , )e e p 

Et sous forme différentielle: Et sous forme différentielle:

1, , ( )e p 




1 1 2 3( , )   

1 2 3, ,  
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2.1.2 Formulation du premier principe
Premier principe de thermodynamique

Surface
- déformable
- fermée
- conductrice (travail, chaleur)

 Système fermé (pas de flux de masse) 

La somme de l’énergie fournie sous forme de chaleur        et de travail         à une masse de 
gaz m est égale à la variation de son énergie totale 

 Substance chimiquement inerte 

W Q

tdE
WQ

tdE Q W  

système
matériel

masse      = cstem
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2.1.2 Formulation du premier principe
Premier principe de thermodynamique

En divisant par la masse    , le premier principe s’écrit:

chaleur spécifique ou massique fournie par l’extérieur
 travail spécifique ou massique fourni par les forces extérieures
 variation d’énergie spécifique ou massique totale 
 variation d’énergie interne spécifique ou massique
 variation d’énergie cinétique spécifique ou massique
 variation d’énergie potentielle spécifique ou massique

t cin potde de de de q w     

tde
de

potde
cinde

q
w

w qsystème
matériel

masse      = cstem

m
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2.1.2 Formulation du premier principe
Premier principe de thermodynamique

Energie interne          
= énergie cinétique + potentielle  à l’échelle atomique/moléculaire

e

Atome

Translation Rotation

Vibration

Exemple: pour un gaz parfait
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2.1.3 Formulation alternative du 1er principe
Premier principe de thermodynamique

EXPRESSION DU TERME DE TRAVAIL MÉCANIQUE pour un processus REVERSIBLE 

Hypothèses

 Système homogène isotrope

 Energie potentielle nulle

 Energie cinétique nulle

 Déplacement du piston sans frottement

Par définition, le volume massique s’écrit, Le volume peut aussi s’exprimer par:

1V
m




  0 0( )V V S x x  

Puisque  est constant (système fermé),
on obtient la relation différentielle

qui devient sous forme différentielle:

dV m d
dV S dx

 m d S dx
m ddx

S




m

0x x

p

V S

F p S 
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2.1.3 Formulation alternative du 1er principe
Premier principe de thermodynamique

Le travail massique exercée par la force extérieure        est égal à:

( ) ( )F p S mw dx d pd
m m S

  
 

  

On remplace ce terme dans la formulation du premier 
principe:

mdx d
S



de q w  

Remarque

Le remplacement de          par               nécessite un processus réversible:

Le déplacement doit être suffisamment lent pour admettre une 
pression uniforme dans le volume du cylindre et pour négliger les 
frottements

de q w q pd      

w pd

F

F p S 
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2.1.4 Chaleurs spécifiques
Premier principe de thermodynamique

Un transfert de chaleur   implique une variation de température   du système

Définition

  La chaleur spécifique est définie par :
qc

dT




 A l'aide du premier principe la définition devient (pour une transformation réversible)

n’est pas une variable 
d’état

La chaleur spécifique dépend de la transformation 

q de dc p
dT dT dT
 

   de q pd  

 On utilise couramment les chaleurs spécifiques à pression constante et à volume 
constant,

p
p

qc
dT
    

qc
dT



    

q

q dT
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2.1.4 Chaleurs spécifiques
Premier principe de thermodynamique

  Pour un système simple, on peut écrire:

( , )e e T
  Ainsi T

e ede d dT q pd
T 

  


                 

  Remarques

p
p T p

q e ec p
dT T T

 


                                         

  Pour les transformation choisies, on en déduit: 

q ec
dT T

 

             

 Relation complexe pour   car les termes en   ne s’annulent pas pour la 
transformation à pression constante

 Utilisation d’une autre variable d’état pour le calcul de 

T

e eq dT p d
T 

 


                    

pc d

pc
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2.1.4 Chaleurs spécifiques
Premier principe de thermodynamique

  Définition de la variable d’état enthalpie:

h e p 
  En vertu du premier principe: 

),( Tphh =

  Pour les transformations choisies, on en déduit:

p
p p

q hc
dT T
             

  Pour un système simple, on peut écrire:

p T

q h h pc
dT T p T

 




                                      

dh de pd dp    
dh q dp  

pT

h hdh dp dT q dp
p T

 
                 

p T

h hq dT dp
T p

 
                     
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2.1.4 Chaleurs spécifiques
Premier principe de thermodynamique

  Finalement, on retient les relations suivantes pour       et

  On en déduit les relations suivantes:

  Le rapport des chaleurs spécifiques     est défini par 

p
p p

q hc
dT T
             

p p

h
c T

ec
T







     
 

     

p
T p T

e h pc c p
T p T








                                               

q ec
dT T

 

             
p

T p

e ec p
T T




                              

p T

h h pc
T p Tυ

υ

υ
  ∂ ∂ ∂   = + −      ∂ ∂ ∂     



c pc
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2.2.1 Entropie
Second principe de thermodynamique

Accroissement d’entropie d’un système à température  lié à un transfert de chaleur

Loi de Clausius pour une transformation réversible

Système en équilibre (homogène)

Il existe donc une variable d’état
à laquelle Clausius a donné le nom d’ENTROPIE

rév

qds
T
    

rév

0q
T
    

q

T

T q

s
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2.2.1 Entropie
Second principe de thermodynamique

Accroissement d’entropie d’un système à température  lié à un transfert de chaleur

Transformation irréversible
avec création interne d’entropie

Système en déséquilibre (non homogène),
transfert de chaleur interne, réaction chimique 
(création d’entropie)

i
qds s

T


 Comme l’entropie est une fonction d’état, elle ne 
dépend pas de la transformation, réversible ou 
irréversible

is

q

T

T q
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2.2.2 Formulation du second principe
Second principe de thermodynamique

Toute transformation thermodynamique est irréversible

La variation d’entropie d’un système thermodynamique quelconque, due 
aux opérations internes, ne peut être que positive ou nulle.

 Le second principe de la thermodynamique s’énonce comme suit:

 Le second principe prend ainsi l'une ou l'autre des formes suivantes:

0is  qds
T



  Remarques

Une transformation réversible dans ce cas est un processus idéal, qui peut être considérer 
comme une suite d'états d'équilibres infiniment voisins
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2.2.2 Formulation du second principe
Second principe de thermodynamique

 Dans certains cas, les phénomènes irréversibles sont assez faibles pour être négligés, 
nous avons alors, pour une transformation réversible:

 Remarques

de Tds pd 

qds
T




 Conséquence:

 Le premier principe s’écrit donc:

 On obtient

  Ces relations s’appellent les RELATIONS DE GIBBS.

 Elles ne dépendent que de fonctions d’état: ELLES SONT VALABLES POUR TOUTE 
TRANSFORMATION, RÉVERSIBLE OU IRRÉVERSIBLE.

q Tds 

dh Tds dp 

Tds de pd dh dp    
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2.3.1 Relations de réciprocité
Transformations thermodynamiques

Relations de réciprocité obtenues à partir de                         et

 D’après la relation du premier principe précédente:

 Par comparaison, on obtient:

( , )s s p T ),( Tphh =

 Soient,

),( Tpss = ),( Tphh =
 Par suite,

pT

s sds dp dT
p T

                pT

h hdh dp dT
p T

               

1 1
p T

dh dp h hds dT dp
T T T T T p




                      

1 p

p p

cs h
T T T T

               
1

T T

s h
p T p


                       

Tds dh dp 
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2.3.1 Relations de réciprocité
Transformations thermodynamiques

Relations de réciprocité obtenues à partir de                         et),( Tpss = ),( Tphh =

 De plus, à l’aide de la propriété différentielle suivante:

 On obtient les relations,

p T pT

s s
p T T p

                               

pT

h T
p T




                2

1
pT

h T
p T


 

               
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2.3.1 Relations de réciprocité
Transformations thermodynamiques

Relations de réciprocité obtenues à partir de                         et

 D’après la relation du premier principe précédente:

 Par comparaison, on obtient:

( , )s s T ( , )e e T

 Soient,

( , )s s T ( , )e e T
 Par suite,

T

s sds d dT
v T 


                T

e ede d dT
T 




               

1 1
T

de pd e eds p d dT
T T T T T 






                      

1 cs e
T T T T



 

               
1

T T

s ep
T 

                   

Tds de pd 



Flavio Noca Chap 2 - Thermodynamique

2.3.1 Relations de réciprocité
Transformations thermodynamiques

Relations de réciprocité obtenues à partir de                         et

 De plus, à l’aide de la propriété différentielle suivante:

 On obtient les relations,

v TT

s s
T T


 

                                 

T

e pT p
T 

                2

1

T

e pp T
T  

                     

),( Tvss = ),( Tvee =
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2.3.2 Calcul de variation d’entropie
Transformations thermodynamiques

 En se servant de

 Avec les relations de réciprocité et les définitions des chaleurs spécifiques: 

 Avec la relation de Gibbs:

( , )e e T

2 2

1 1

de ps d
T T

   

2 2

1 1

1
T

e e ps dT d d
T T T

 


                     
 

1 cs e
T T T T



 

               

T

e pT p
T 

               

ec
T



     

2 2 2 2

1 1 1 1

1  
T

c ce ps dT p d dT d
T T T T
 



 


                       
   

Variations d’entropie pour une transformation arbitraire

Tds de pd 
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2.3.2 Calcul de variation d’entropie
Transformations thermodynamiques

 En se servant de

 Avec les relations de réciprocité et les définitions des chaleurs spécifiques: 

 Avec la relation de Gibbs:

( , )h h p T=

2 2

1 1

dhs dp
T T

υ
∆ = −∫ ∫

2 2

1 1

1
p T

h hs dT dp dp
T T p T

                    
  p

p

hc
T

     

2 2 2 2

1 1 1 1

1  p p

T p

c chs dT dp dT dp
T T p T T




                         
   

Variations d’entropie pour une transformation arbitraire

Tds dh dp 

pT

h T
p T




               

T
c

T
h

TT
s p

pp
=







∂
∂

=






∂
∂ 1
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2.3.3 Transformation isentrope
Propriétés thermodynamiques des gaz parfaits

  A partir de la relation:

 Une transformation est dite ISENTROPIQUE si:

i
qds s

T


 

0ds 

 Une transformation est donc isentrope quand:

 Elle est adiabatique: 0q 

 Elle est réversible: 0is 

s const
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Transformations thermodynamiques
2.3.4 Vitesse du son
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Transformations thermodynamiques
2.3.4 Vitesse du son

 Isotherme (température constante) ou isentropique (adiabatique et réversible) ???

 Diffusion thermique: 

 Echelle de diffusion thermique (distance sur laquelle se propage la chaleur): 

3 8 210 10D m s 

 Echelle de propagation sonore = longueur d’onde acoustique: 

f : fréquence acoustique

1thermique

acoustique

D f
a






 

La propagation acoustique est largement adiabatique pour 910f Hz

a : vitesse du son

thermique
D
f

 

acoustique
a
f

 
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 Soit une transformation isentropique

 On considère une petite perturbation de pression

 Définition

   
2

2
0 0 02

1 ...
2s s

p pp p p    
 

                       

 On effectue un développement en série de Taylor

On appelle vitesse du son la grandeur      telle que:

s

pa


       

Transformations thermodynamiques
2.3.4 Vitesse du son

0( , ) ( , ) ( )p p s p s p    

p

a
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2.3.5 Compressibilité

Une variation de pression       agissant sur une particule engendre un pourcentage de  
variation de volume
 Définition

  Cette définition est insuffisante, il faut spécifier la transformation

 Par exemple, avec            , on obtient le coefficient de compressibilité isentropique:

 Le coefficient de compressibilité est définie par:

1 dV
V dp


     

1 d
dp





     
1 d

dp





     

1
x

x

V
V p


        

1
x

xp





       
1

x
xp






       

1
s

s

V
V p


        

1
s

sp





       
1

s
sp






       

dp
dV V

x s

Transformations thermodynamiques



Flavio Noca Chap 2 - Thermodynamique

La compressibilité d’un écoulement  (ou d’une transformation) est la variation de 
masse volumique, qui dépend de la variation de deux variables d’état

 Avec la pression et l’entropie comme variables indépendantes

 Avec la pression et la température comme variables indépendantes

T p
d dp dT

 


  1
T

Tp





      
1

p
pT





     

1 1 p
s

p ps

Td dp ds dp ds
p s c

  


  

                

1
1 1 p p p

pp

p p

T T
cs ss

T T T

 


 

                                      

p

p

c s
T T

     

2.3.5 Compressibilité
Transformations thermodynamiques
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 Pour un écoulement isentropique:

    On utilise aussi le module d’élasticité isentropique pour spécifier la compressibilité

21
s

s s

pK a 
 

        

 s
d dpp

p





 

s

pa


      

EPFL-SCI-STI-PO 31MFC-Eléments de thermodynamique

  Pour un liquide: 2 1s
pp
a




 

2

1 1
s

sp a



 

       

    Plus       est grand, plus le matériau est rigide, plus la vitesse du son est grandesK

p
s

p

Td dp ds
c





 

2.3.5 Compressibilité
Transformations thermodynamiques

2

d p dp
pa


 

 
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EPFL-SCI-STI-PO

 Eau

21'000sK atm

5 14,8 10s atm  

1% 210p atm



 

2.3.5 Compressibilité
Transformations thermodynamiques
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EPFL-SCI-STI-PO

 Eau incompressible  Eau compressible

g5'062 m 5'000 m

2.3.5 Compressibilité
Transformations thermodynamiques
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Interprétation du nombre de Mach
  Le nombre de Mach    caractérise la compressibilité d’un écoulement

uM
a



  En élevant au carré, on voit apparaître
2 2 2

2
2

  

s s

u u u SM
a K K S

 
  

2 inertie inertie

rigidité rigidité

FM
F




 

2
sK a

  Avec une surface S arbitraire, on a:

rigidité sF K S

2 inertieF u S

F
S



L’écoulement est compressible lorsque les effets d’inertie dominent les effets de rigidité 
(responsables de la vitesse de propagation des ondes de pression).

M
M

2.3.5 Compressibilité
Transformations thermodynamiques
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2.4.1 Définition
Propriétés thermodynamiques des gaz parfaits

Force d’interaction entre atomes  et molécules

 Pour un gaz parfait, on suppose une distance infiniment grande entre les molécules

 Energie potentielle d’interaction nulle

 Energie sous forme d’énergie cinétique uniquement
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2.4.1 Définition
Propriétés thermodynamiques des gaz parfaits

 Si un gaz est considéré comme parfait:

  o
particles

A m les
A

N
p V k N T R TN

N
            

Loi des physiciens (en nombre de particules                 )

Loi des chimistes (en nombre de moles             )

Loi des ingénieurs (en masse      )

particles
particles

N
p k T n k T

V
     

 moles
Rp V N T r Tm

          




particlesp NV k T   

mp r T r T
V

     

moles
moles

Np R T n R T
V

     

23 11.3806 10k J K   Constante de Boltzmann 

 Constante universelle des gaz  8.314 .A J mol KR k N  

23 16.02214076 10A lN mo   Nombre d’Avogadro

 Masse molaire 1kg mol   

1 1Rr J kg K      
 Constante spécifique du gaz

particlesN

molesN

m
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2.4.2 Conséquence de l’équation des gaz parfaits
Propriétés thermodynamiques des gaz parfaits

Energie interne et enthalpie
 On considère les relations de réciprocités suivantes: 

2

1

T

e pp T
T  

                     
2

1
pT

h T
p T


 

               

 Avec l’équation d’état, on montre que:

0
T

e


       
0

T

h
p

       
 En d’autres termes:

( , ) ( )h h p T h h T  ( , ) ( )e e T e e T  

Pour un gaz parfait, l’énergie interne et l’enthalpie ne dépendent que de la 
température statique
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2.4.2 Conséquence de l’équation des gaz parfaits
Propriétés thermodynamiques des gaz parfaits

Variation d’énergie interne avec  

T

e ede d dT
T 




                pT

h hdh dp dT
p T

               

 Relations de réciprocité,

0
T

e


       
0

T

h
p

       

 On remplace et on intègre:

( )ph c T dT const ( )e c T dT const 

Variation d’enthalpie avec  ( , )e e T ( , )h h p T

 Relations de réciprocité,

 On remplace et on intègre:

 Pour une transformation avec        constant:  Pour une transformation avec       constant:

e c T const 

e c
T 



      p
p

h c
T

     

ph c T const 

c pc
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2.4.2 Conséquence de l’équation des gaz parfaits
Propriétés thermodynamiques des gaz parfaits

Chaleurs spécifiques
 On rappelle la relation précédemment obtenue:

p
T

h p pc c
p T T

 

 
                                  

 Avec l’équation des gaz parfaits, on a la relation de Meyer:

 Avec la définition 

pc c r  1
p p

c r
c c
 

pc
c

 

 
1p

rc 



 1

rc 



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2.4.2 Conséquence de l’équation des gaz parfaits
Propriétés thermodynamiques des gaz parfaits

Variation d’entropie avec

p T

s sds dT dp
T p

              T

s sds dT d
T 




               

 Relations de réciprocité,

T

s
p T

        T

s p
T

     

 On obtient avec l’équation d’état:

ln( )dTs c r const
T   ln( )p

dTs c r p const
T

  

Variation d’entropie avec  ( , )s s T p ( , )s s T 

 Relations de réciprocité,

 On obtient avec l’équation d’état:

 Pour une transformation avec cp constant:  Pour une transformation avec cv constant:

2 2

1 1

ln lnp
T ps c r
T p

                

p

p

cs
T T

     

cs
T T





     

2 2

1 1

ln lnTs c r
T




                
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2.4.3 Transformation isentrope
Propriétés thermodynamiques des gaz parfaits

 Avec :

 On obtient:

1
rc 




 On divise par     :

2 2

1 1

ln ln
1

Trs r
T


 

                 

1
1

2 2

1 1

ln lnTs
r T

 


                

1p
rc 






2 2

1 1

ln ln
1

T prs r
T p




                 

1
2 2

1 1

ln lnT ps
r T p


                

r
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2.4.3 Transformation isentrope
Propriétés thermodynamiques des gaz parfaits

  Pour une transformation isentrope (adiabatique et réversible), on a: 0s 

 La plus simple à mémoriser:

1
2 2 2

1 1 1

p T
p T




 


                           

p const  

1
1

2 2

1 1

T
T




     

1
1

2 2 2

1 1 1

ln ln lnT
T

  
 

                           

1
2 2

1 1

ln lnT p
T p


              

1
2 2

1 1

p T
p T


     
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2.4.4 Vitesse du son
Propriétés thermodynamiques des gaz parfaits

  Avec l’équation d’état et la relation isentrope, on a:

 On en déduit la relation:

1

s

p const pconst


 
  

  


          

 On a donc
s T

p p


 

                 

2

s

pa rT


       

T

p prT
 

        

La vitesse du son est une propriété du fluide par l’intermédiaire de la grandeur      
qui dépend de son état, ici la température   .

p const  


T
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 Pour un écoulement isentrope:

 s
d dpp

p





 

 Gaz parfait:
1

s p


 1d dp
p


 


2

1 1
s

sp a



 

       

p
s

p

Td dp ds
c





 

2.4.5 Compressibilité
Propriétés thermodynamiques des gaz parfaits

 Avec la pression et la température comme variables indépendantes

d dp dT
p T




 

1
T

Tp





      

1
p

pT




     

T p
d dp dT

 


 

2a rT

1
T p

 
1

p T
 
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